Ramsey RESET Test

Ramsey RESET Test

Overview

Definition

The Ramsey Regression Equation Specification Error Test (RESET) determines whether a linear regression model has been incorrectly specified. Specifically, it tests for omitted variables or incorrect functional forms (e.g., non-linear relationships missing).


1. Procedure

  1. Estimate the OLS model: Y=Xβ+u.
  2. Calculate the fitted values: Y^.
  3. Create auxiliary regression: Add powers of fitted values (Y^2,Y^3,) as new predictors to the original model.Y=Xβ+γ1Y^2+γ2Y^3+v
  4. Test Significance: Test if γ1=γ2=0 using an F-test.

2. Interpretation

Significant Result: Indicates that non-linear combinations of the predictors help explain the response, suggesting that terms (like squares or interactions) are missing from the original model.


3. Python Implementation Example

import statsmodels.stats.diagnostic as dg

# Results: [F-Stat, p-value, df_num, df_denom]
reset = dg.linear_reset(model, power=2, test_type='fitted')
print(f"RESET p-value: {reset.pvalue:.4f}")